

30 Inch Wide Eclipse Modular Cubers

Technical Training

Scotsman[°] Eclipse 1300 - 2000

- Ice Making Head
 - CME1386
 - CME1686
- Compressor Package
 - CP1316
 - CP2086
- Condenser
 - ERC1086
 - ERC2086

Scotsman[®] The Eclipse System

- The remote system is made up of three parts:
 - Ice Making Section or Head Unit 115 volt
 - Compressor Package 208-230 volt
 - AC Condenser 208-230 volt
- Flexible Modular System
 - CME1386 or CME1686 can connect to CP1316
 - ERC1086 can be used on 1000, 1300 or 1600 systems
 - All are R-404A systems

Scotsman[®] Ice Making Section

- 30" Wide Head Units
- CME1386 or CME1686 or CME2086
 - Remote Low Side
 - CM³ technology
 - Water and Control Systems
 - Rotomolded freezing compartment

Scotsman[®] Ice Making Section

- Refrigerant Line Connections
 - Vapor
 - Liquid
 - Suction

Scotsman[®] Ice Making Section

- Ice making compartment
- Five or Six evaporators
 - CME1386 has 5
 - CME1686 and
 CME2086 have 6

Vapor Inlet Valve

- Purpose: Opens during harvest to allow vapor to enter the evaporators
- 24 volt coil

One TXV

- Single externally equalized valve
 - Meters refrigerant through a distributor

TX

Water Pump

- 115 volt pump
- Same for all three
- Pedestal type
- Pump motor separated from reservoir
 - Keeps motor drier
 - Motor cap keeps condensation off motor

Controller

- AutolQplus
- Uses sensors for
 - ice harvest,
 - bin full indications
 - water reservoir temperature
 - water level
- Controls freeze and harvest cycles

Scotsman[°] CME Electrical Box

- Transformer 115
 to 24, 85 VA
- Purge valve timer
- Control wire connection nearby
 - Wire routes to compressor package
 - Controls
 contactor and
 solenoid valves

Box purposely mounted at an angle

Scotsman[®] Evaporator Covers

Scotsman[®] Freezing Compartment

Scotsman[®] Temperature Sensors

- Two sensors
 - Water
 - In pump discharge hose
 - Used to check water temp for anti-slush and refrigeration system operation
 - Liquid
 - Used to determine which pre-set time for first harvest cycle
 - Lower temperatures = longer first harvest cycle

Inlet Water Valve

- Opens to add water and fill reservoir
 - Adds water during harvest
 - Fills at beginning of freeze
 - Refills once more during freeze

Purge Valve

- Opens to drain the reservoir during harvest
- Controlled by purge valve timer

Ice Sensors

- Infrared sensors
 - Located at the ice outlet port
 - Create a light curtain
 - Harvesting ice triggers the sensor

Bin Thermostat

- CME1386, CME1686 and CME2086 are all equipped with a bin thermostat.
- Thermostat routes through hole in base.

Bin Thermostat

- Thermostat bulb must be mounted to the bracket
- The bracket mounts to the bottom of the ice machine

Scotsman[•] Compressor Package

- Two models
 - CP1316
 - Reciprocating compressor
 - CP2086
 - Scroll compressor

CP Unit

Condenser Bypass Valve

Low Side Access Valve -

CPR Valve

Access Valves

Low Side: Compressor Suction High Side: Compressor Discharge

Receiver Liquid Outlet

Scotsman[®] Crankcase Pressure Regulator

- CPR valve restricts compressor dome pressure during harvest
 - 55 to 60 PSIG
 - Pre-set don't adjust it!

Scotsman[°] Condenser Bypass Valve

- Normally Closed, opens during harvest
- Bypasses condenser coil and directs discharge gas to vapor line

Headmaster

- Maintains discharge pressure during freeze
- Active at any temp below 70°F.
 - Rated at 217 PSIG, freeze cycle pressure may be between 220 and 250 during cold ambient operation

Liquid Inlet Valve

- Normally Open, closes during harvest
- Controls liquid flow
 into receiver
- Isolates refrigerant in condenser during harvest
- Improves cycle time

Receiver

- Shipped with system charge
- Three ports
 - Liquid inlet
 - Liquid outlet
 - Vapor outlet

Scotsman°

Electrical Box

- Toggle switch controls condensing unit
- Control Wire connection from Ice Making Section to control the system
- Electrical power connected at contactor
- Remote condenser fan connects at contactor

Toggle Switch

Control Wire Connection

CP2086

- Scroll compressor
- Three Phase
 - Supply wiring can make it start backwards
 - To fix, switch two power leads
- Single Phase
 - Always starts with the correct rotation
 - Can reverse after power interruption
 - Time delay relay in circuit to prevent reversal

Scotsman[°] CP2086 Single Phase

- Compressor protection circuit
 - 24 volt transformer
 - 24 volt relay
 - Time Delay Relay
 - Power interruption of as little as 15 milliseconds causes relay to shut compressor off for 30 seconds
 - Compressor then restarts

Transformer

Scroll Compressor

- Oil sight glass and oil drain / fill port
- Don't add oil!
 - Oil level will change during each cycle
 - Ranges between
 1/3 & 1/2 full

Scotsman°

Condensers

- Two models ONLY for Eclipse
 - ERC1086 used with CP1386 and CP1686
 - ERC2086 only used with CP2086
- No headmaster in condenser
 - Headmaster is in CP unit
- Swivel nut connections for CP unit
 - Don't connect these condensers to a regular remote!

System Installation

- Three systems, single and three phase for each
 - 1300
 - 1600
 - 2000
- Must match components to create system

System Installation

- 1300 -
 - CME1386, CP1316, ERC1086
- 1600 -
 - CME1686, CP1316, ERC1086
- 2000 -
 - CME2086, CP2086, ERC2086
- CP units may also be connected to approved central condenser coil using tubing kit RTE10
 - Coil must NOT have headmaster

Scotsman[®] Equipment Location

- CME can be above or below condensing unit
 - If above, limit is 15 feet
- Pre-charged lines are used
 - 3 tubes per set
 - 20, 50 and 75 foot only
 - No extra refrigerant charge required
 - S trap required when condensing unit is over 20' above ice making head

Scotsman Other Configurations

Condensing Unit

- Modular system connect CP to ERC
- Assemble on roof or ground
- ERC has back legs and two braces
 - Assemble legs and braces to condenser
- Connect wires to junction box
- Place ERC on back of CP lip on CP holds ERC up

Condensing Unit

- Fasten CP to ERC
- Connect liquid and discharge line connections
- Route wire to CP control box and connect to contactor

Quick Connects

Partial Assembly, One Thread Showing

Status: Not Ready, diaphragms partially pierced

Quick Connects

Partial Assembly, Threads are Flush

Status: Not Ready, diaphragms pierced but connection not leak proof.

Quick Connects

Completed Assembly

Status: Ready, diaphragms fully pierced and joint is leak proof

Line Set

- Three tubes
- Reversible
- CME routing determines which end goes to CME
 - Out the back use double-bend ends at CME
 - Out the top use single
 90 degree ends at CME

Ends for out the CME back

Scotsman[•] Line Set Installation

- Route lines in two groups
 - Liquid and Vapor
 - Suction separately for ease of routing
 - 3/4" tube requires careful handling
 - Check for holding charge before installation
 - Route control wire with line set
 - Only shorten if necessary
 - Do before connections are made!
 - Purge with nitrogen while brazing
 - Schraders at both ends for purging
 - Evacuate to 300 microns or less
 - Add holding charge if connecting later

Install CME

- Flush against wall capability
- Drains left or back
- Route refrigeration tubes out the top for flush installations
- 115 volt unit, cord provided

Scotsman[•] Utility Connections

- Attach water inlet
- Attach drain 3/4"
- Connect refrigerant tubing. Add foam tape/cork tape to suction line nut
- Secure unit at sides or back with provided strap-clips

Condensing Unit

- Connect precharged lines
 - Use refrigerant oil
 - Use two wrenches to prevent quickconnect diaphragm damage from rotating tube
- Connect control wire
- Connect power, check voltage

Initial Start Up

- Check installation
 - Power
 - Water
 - Drain
 - Tube Routing
- No soak out needed
 - Plug in CME unit
 - Check EEPROM code
 - Push Freeze to start

Start Up

- CME unit
 - Opens & closes Purge Valve
 - Fills with water
 - Switches on Pump
 - Switches on Condensing Unit
 - Compressor and fan begin to operate
- Adjustments
 - Purge is adjustable

Scotsman[°] Operation - Control System

- CM³ control system
 - Water level sensor for
 - Reservoir water fill
 - Freeze cycle termination
 - Ice sensors to sense
 - Ice harvest
 - Controller determines cycles and operates components
 - Uses water level to determine freeze cycle length
 - Uses length of time for ice to fall to determine next harvest
 - Uses thermostat to determine bin full

Control Details

- Water level sensor
 - Two photo-electric eyes in housing
 - Top eye blocked tells controller water level is low
 - Bottom eye blocked tells controller water reservoir is full

Control Details

- Ice sensors photoeyes
 - Located at bottom of ice drop zone
 - One side is an emitter, the other a detector
 - Creates a light curtain that can sense groups of cubes falling during harvest

Scotsman[•] Operation - Freeze

- Similar to conventional remote ice cubers
 - Condensing unit forces liquid refrigerant to the ice making section
 - TXV meters refrigerant all evaporators
 - At a pre-determined water temperature, the pump stops for 30 seconds
 - As ice forms on the evaporators, the water level drops
 - About half way through the cycle the water reservoir re-fills
 - The next time the water level drops to the point where the top of the slot in the float stick blocks the eyes, the system goes into the harvest cycle

Scotsman[®] Operation - Harvest

- Eclipse features Cold Temperature Harvest
 - Condensing Unit may be located outside
 - Temperature Range between -20 and 120 F.
 - Receiver is with the condensing unit
 - Vapor line connects discharge gas and receiver vapor to vapor inlet line in ice making section
 - High vapor flow rates achieved with no compressor impact due to use of CPR valve
 - Vapor contains latent heat even at sub-zero temperatures
 - Condensing vapor in the evaporators transfers the heat
 - Evaporators warm up and ice is released

Scotsman[°] Operation - Harvest Details

- Vapor inlet valve opens
- Condenser bypass valve opens
- Receiver inlet valve closes
- Purge valve opens
- Pump stops for a time then restarts to purge the reservoir of water
- Purge valve closes after 40 seconds
- Inlet water valve opens for a few seconds to add water to the reservoir for harvest assist
- Harvest continues until the controller stops it

Scotsman[°] Operation - Harvest Control

- Controller begins timing harvest
- Ice falling interrupts the signal from the ice sensor emitter to the receiver
 - The time of that interrupt is recorded by the controller
 - The last time the controller receives an interrupt signal is saved as the cube release time
 - Extra time is calculated from the actual cube release time

Measured Cube Release Time + Calculated Extra Time =

Harvest Time

- Freeze Cycle Time (90/70):
 - 1300 16 to 17 minutes
 - 1600 17 to 18 minutes
 - 2000 12 to 13 minutes
- Harvest Cycle Time (90/70)
 - 1300 2 minutes
 - 1600 1 1/2 to 2 minutes
 - 2000 2 1/2 minutes

Condensing Unit

Scotsman[®] Ice Making Section

System Pressures

- Freeze Cycle
 - Rapid Pull Down to between 50 and 40 PSIG
 - Gradual Pull Down to
 - 1300 30 to 34 PSIG
 - 1600 35 to 37 PSIG
 - 2000 23 to 25 PSIG just before Harvest
 - Pressures at CP unit or CME will be the same during Freeze

2000 lb model, end of freeze

System Pressures

- Harvest Cycle
 - At the ice making section, low side pressure rapidly increases to 90 - 95 PSIG or higher in hot ambient conditions
 - At the CP unit compressor access valve, dome pressure is limited by the CPR valve to 55 - 60 PSIG during harvest

System Pressures

- CP Unit
 - Discharge during low ambient freeze will be about 240 PSIG
 - Discharge during harvest will be about 100 PSIG
 - High Pressure Cut Out opens at 450, closes at 350 PSIG

- De-lime with Scotsman Ice Machine Cleaner
 - Push & release clean button
 - Pour in 24 ounces of ice machine cleaner
 - Clean for 10 minutes, then push and release clean button again, wait 20 minutes and shut unit off
- Check distributors for scale build up

- What happens if?
- Vapor Inlet Valve Does Not Open
 - Vapor line hot
 - Discharge pressure increases
 - Low side pressure does not change
 - No ice release large slabs of ice
 - 2 blink refrigeration light

- What happens if?
- Control wire becomes unplugged
 - CP unit does not operate
 - Exceeds maximum freeze time
 - Controller shows continuous refrigeration diagnostic light

- What happens if?
- Condenser by pass valve does not open
 - High pressure cut out opens
 - Note: High discharge pressure during harvest will not be present at liquid connection
 - Ice may release, but slowly

- What happens if?
- Receiver inlet valve does not close during harvest
 - Very little change
- If it sticks closed
 - Hi discharge pressure cut out opens
 - Controller shows continuous diagnostic light

- What happens if?
- Headmaster is stuck in bypass
 - Very little liquid flow to TXVs
 - Long freeze cycle
 - Controller shows continuous refrigeration diagnostic light

- What happens if?
- There is a refrigerant leak
 - No change until refrigerant level drops below the operational threshold for the ambient
 - Headmaster will try to maintain minimum discharge pressure but will be hissing as gas flows through
 - Ice formation will be poor
 - Low capacity/long freeze cycle will result
 - Add charge to confirm, if ice making resumes with normal discharge pressure there is a leak

- What happens if?
- There is no water to the ice making section
 - Water is part of the recipe for ice!
 - Controller will stop unit operation but retry filling every 20 minutes until water is restored

- What happens if?
- The purge valve leaks through
 - May result in small cubes
 - Short freeze cycle
 - May have long harvest cycle

- What happens if?
- The inlet water valve leaks through
 - Keeps adding water (heat load) to reservoir
 - Result is a long freeze cycle

- What happens if?
- The condenser fan stops
 - CP unit's hi pressure cut out will open
 - Maximum freeze time will be exceeded
 - CME unit will shut system off
 - Controller will display continuous refrigeration diagnostic light
- What happens if?
- The CPR valve fails
 - Pressure during harvest will not be at the pre-set point
 - 55 to 60 PSIG
 - Will not hold an adjustment
 - No external symptom
- CPR setting should be checked if compressor is replaced

- What happened if?
- The controller is showing a one blink refrigeration diagnostic light
 - This indicates that the ice harvest was very slow and the controller timed-out on maximum harvest time
 - Ice was sensed by the control system
 - Likely causes include
 - Beginning to freeze up

- What happened if?
- The controller is showing a two blink refrigeration diagnostic light
 - This indicates that the ice harvest was very slow and the controller timed-out on maximum harvest time
 - Ice was NOT sensed by the control system
 - Likely causes include
 - Freeze up
 - Vapor inlet valve did not open
 - Ice sensor can't "see" ice well

- What happened if?
- The controller is showing a continuous refrigeration diagnostic light
 - Maximum freeze time exceeded
 - Dirty condenser coil
 - Fan motor inoperative

- What happened if?
- The controller is showing a two blink water diagnostic light
 - Slow or no water fill
 - Possible clogged water filters
 - Low water level leaks out
 - Water level sensor not working or harness connection poor

- What happened if?
- The controller is showing both diagnostic lights on continuously
 - This indicates that the temperature sensors are not working or not plugged in. They need to be plugged back in or replaced.
 - The ice machine will operate without the thermistors working, but it is limited in its diagnostics that way

Summary

- Eclipse is a three part ice making system
 - Ice making head
 - Compressor Package
 - Condenser
- There are 6 systems
 - 600
 - 800
 - 1000
 - 1300
 - 1600
 - 2000